Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{x^2}{\left( x - 1 \right)^3}\text{ dx }\]
\[ = \int\left[ \frac{x^2 - 1 + 1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{\left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right)^3} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x + 1}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x - 1 + 2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{1}{\left( x - 1 \right)} + \frac{2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\frac{1}{x - 1}\text{ dx }+ 2\int \left( x - 1 \right)^{- 2} \text{ dx }+ \int \left( x - 1 \right)^{- 3} \text{ dx }\]
\[ = \text{ ln} \left| x - 1 \right| + 2 \left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \left[ \frac{\left( x - 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \text{ ln} \left| x - 1 \right| - \frac{2}{\left( x - 1 \right)} - \frac{\left( x - 1 \right)^{- 2}}{2} + C\]
\[ = \text{ ln }\left| x - 1 \right| - \frac{2}{x - 1} - \frac{1}{2 \left( x - 1 \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]