हिंदी

∫ x 2 ( x − 1 ) 3 d x - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
योग

उत्तर

\[\int\frac{x^2}{\left( x - 1 \right)^3}\text{ dx }\]
\[ = \int\left[ \frac{x^2 - 1 + 1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{\left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right)^3} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x + 1}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{x - 1 + 2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\left[ \frac{1}{\left( x - 1 \right)} + \frac{2}{\left( x - 1 \right)^2} + \frac{1}{\left( x - 1 \right)^3} \right]\text{ dx }\]
\[ = \int\frac{1}{x - 1}\text{ dx }+ 2\int \left( x - 1 \right)^{- 2} \text{ dx }+ \int \left( x - 1 \right)^{- 3} \text{ dx }\]
\[ = \text{ ln} \left| x - 1 \right| + 2 \left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \left[ \frac{\left( x - 1 \right)^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \text{ ln} \left| x - 1 \right| - \frac{2}{\left( x - 1 \right)} - \frac{\left( x - 1 \right)^{- 2}}{2} + C\]
\[ = \text{  ln }\left| x - 1 \right| - \frac{2}{x - 1} - \frac{1}{2 \left( x - 1 \right)^2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 33 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×