हिंदी

∫ √ Cot θ D θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]
योग

उत्तर

\[\text{ We have,} \]

\[I = \int\sqrt{\cot \theta} d   \text{ θ}\]

\[\text{ Putting  cot} \text{ θ} = t^2 \]

\[ \Rightarrow - {cosec}^2 \text{ θ dθ}= 2t \text{ dt }\]

\[ \Rightarrow d\theta = - \frac{2t \text{ dt }}{\cos e c^2 \text{ θ }}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + co t^2 \text{ θ}}\]

\[ \Rightarrow d\theta = \frac{- 2t \text{ dt}}{1 + t^4}\]

\[ \therefore I = \int t\left( \frac{- 2t \text{ dt }}{1 + t^4} \right)\]

\[ = - \int\left( \frac{2 t^2}{1 + t^4} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1 + t^2 - 1}{t^4 + 1} \right)dt\]

\[ = - \int\left( \frac{t^2 + 1}{t^4 + 1} \right)dt - \int\frac{\left( t^2 - 1 \right)dt}{t^4 + 1}\]

` \text{Dividing numerator and denominator by} \text{  t}^2 `

\[I = - \int\left( \frac{1 + \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt - \int\left( \frac{1 - \frac{1}{t^2}}{t^2 + \frac{1}{t^2}} \right)dt\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} - 2 + 2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{t^2 + \frac{1}{t^2} + 2 - 2}\]

\[ = - \int\frac{\left( 1 + \frac{1}{t^2} \right)dt}{\left( t - \frac{1}{t} \right)^2 + \left( \sqrt{2} \right)^2} - \int\frac{\left( 1 - \frac{1}{t^2} \right)dt}{\left( t + \frac{1}{t} \right)^2 - \left( \sqrt{2} \right)^2}\]

\[\text{ Putting   t} - \frac{1}{t} = p\]

\[ \Rightarrow \left( 1 + \frac{1}{t^2} \right)dt = dp\]

\[\text{ Putting}\ t + \frac{1}{t} = q\]

\[ \Rightarrow \left( 1 - \frac{1}{t^2} \right)dt = dq\]

\[I = - \int \frac{dp}{p^2 + \left( \sqrt{2} \right)^2} - \int\frac{dq}{q^2 - \left( \sqrt{2} \right)^2}\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{p}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{q - \sqrt{2}}{q + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{t - \frac{1}{t}}{\sqrt{2}} \right) - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{t + \frac{1}{t} - \sqrt{2}}{1 + \frac{1}{t} + \sqrt{2}} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \text{ tan}^{- 1} \left( \frac{t^2 - 1}{\sqrt{2} t} \right) - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{t^2 + 1 - \sqrt{2}t}{t^2 + 1 + \sqrt{2}t} \right| + C\]

\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\cot \theta - 1}{2\sqrt{\cot \theta}} \right) - \frac{1}{2\sqrt{2}}\text{ log } \left| \frac{\cot \theta + 1 - \sqrt{2 \cot \theta}}{\cot \theta + 1 + \sqrt{2 \cot \theta}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.31 [पृष्ठ १९०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.31 | Q 2 | पृष्ठ १९०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×