हिंदी

∫ √ 3 X 2 + 4 X + 1 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]
योग

उत्तर

\[\int\sqrt{3 x^2 + 4x + 1} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}}\text{  dx }\]
\[ = \sqrt{3}\int\sqrt{x^2 + \frac{4}{3}x + \left( \frac{2}{3} \right)^2 - \left( \frac{2}{3} \right)^2 + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \frac{4}{9} + \frac{1}{3}} \text{  dx }\]
\[ = \sqrt{3}\int\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \text{  dx }\]
\[ = \sqrt{3} \left[ \frac{1}{2}\left( x + \frac{2}{3} \right)\sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} - \frac{1}{2} \times \left( \frac{1}{3} \right)^2 \text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{\left( x + \frac{2}{3} \right)^2 - \left( \frac{1}{3} \right)^2} \right| + C \right] ....................\left[ \because \int \sqrt{x^2 - a^2} dx = \frac{1}{2}x\sqrt{x^2 - a^2} - \frac{1}{2} a^2 \text{ ln 
}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = \frac{1}{6}\left( 3x + 2 \right)\sqrt{3 x^2 + 4x + 1} - \frac{\sqrt{3}}{18}\text{ ln } \left| \left( x + \frac{2}{3} \right) + \sqrt{x^2 + \frac{4}{3}x + \frac{1}{3}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 87 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×