हिंदी

∫ 1 √ 1 + 4 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 

योग

उत्तर

 

\[\int\frac{dx}{\sqrt{1 + 4 x^2}}\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.14 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.14 | Q 5 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×