Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
योग
उत्तर
\[\int\frac{dx}{\sqrt{1 + 4 x^2}}\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
\[ = \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[\text{let 2x }= t\]
\[ \Rightarrow 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]
\[Now, \int\frac{dx}{\sqrt{1 + \left( 2x \right)^2}}\]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{1 + t^2}} \]
\[ = \frac{1}{2} \text{ log} \left| t + \sqrt{1 + t^2} \right| + C \left[ \because \int\frac{dx}{\sqrt{x^2 + a^2}} = \text{ log} \left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \frac{1}{2} \text{ log }\left| 2x + \sqrt{1 + 4 x^2} \right| + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ cos mx cos nx dx `
\[\int\frac{e^x + 1}{e^x + x} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int x e^{2x} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\frac{1}{a + b \tan x} \text{ dx }\]
\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int x \sec^2 2x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`