हिंदी

∫ 1 ( X − 1 ) √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
योग

उत्तर

\[\text{ We  have, } \]
\[I = \int \frac{dx}{\left( x - 1 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting  x }- 1 = \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int\frac{- \frac{1}{t^2}dt}{\left( \frac{1}{t} \right) \sqrt{\left( 1 + \frac{1}{t} \right)^2 + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\sqrt{1 + \frac{1}{t^2} + \frac{2}{t} + 1}}\]
\[ = \int \frac{- \frac{1}{t}dt}{\frac{\sqrt{t^2 + 1 + 2t + t^2}}{t}}\]
\[ = \int \frac{- dt}{\sqrt{2 t^2 + 2t + 1}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{t^2 + t + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}}\int \frac{dt}{\sqrt{t^2 + t + \frac{1}{4} - \frac{1}{4} + \frac{1}{2}}}\]
\[ = - \frac{1}{\sqrt{2}} \int \frac{dt}{\sqrt{\left( t + \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{\sqrt{2}}\text{ log }\left| t + \frac{1}{2} + \sqrt{\left( t + \frac{1}{2} \right)^2 + \frac{1}{4}} \right| + \text{ C where t} = \frac{1}{x - 1}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.32 | Q 8 | पृष्ठ १९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×