हिंदी

∫ ( 1 − X 2 ) X ( 1 − 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
योग

उत्तर

\[\text{ We have}, \]
\[I = \int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)}\text{ dx }\]
\[ = \int\left( \frac{- x^2 + 1}{- 2 x^2 + x} \right)dx\]
\[ = ∫\frac{1}{2}dx + \int\left( \frac{1 - \frac{x}{2}}{- 2 x^2 + x} \right) d x\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{2 - x}{- 2 x^2 + x}dx\]
\[ = \frac{1}{2}\left[ \int dx + \int\frac{2 - x}{- 2 x^2 + x}dx \right]\]
\[ = \frac{1}{2}\left[ I_1 + I_2 \right] \left( \text{ say }\right)\]
\[\text{ where }I_1 = \int\ dx\ \text{and}\ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[Now, I_1 = \int dx\]
\[ = x + C_1 \]
\[ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[\text{ Let 2 }- x = \text{ A }\frac{d}{dx} \left( - 2 x^2 + x \right) + B\]
\[ \Rightarrow 2 - x = A \left( - 4x + 1 \right) + B\]
\[ \Rightarrow 2 - x = - 4Ax + A + B\]

Comparing coefficients of like terms

\[- 1 = - 4 A\]
\[ \Rightarrow A = \frac{1}{4}\]
\[\text{ and } A + B = 2\]
\[ \Rightarrow \frac{1}{4} + B = 2\]
\[ \Rightarrow B = 2 - \frac{1}{4}\]
\[ = \frac{8 - 1}{4}\]
\[ = \frac{7}{4}\]

\[\therefore \int\frac{2 - x}{- 2 x^2 + x}dx = \int\frac{\frac{1}{4}\left( - 4x + 1 \right) + \frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \int\frac{\frac{1}{4}\left( - 4x + 1 \right)}{- 2 x^2 + x}dx + \int\frac{\frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| + \frac{7}{4}\int\frac{1}{- 2\left( x^2 - \frac{x}{2} + \frac{1}{16} - \frac{1}{16} \right)}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| - \frac{7}{8}\int\frac{1}{\left\{ \left( x - \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 \right\}}dx\]
\[ = \frac{1}{4}\text{ log } \left| x\left( - 2x + 1 \right) \right| - \frac{7}{8} \times \frac{1}{2 \times \frac{1}{4}}\text{ log }\left| \frac{x - \frac{1}{4} - \frac{1}{4}}{x - \frac{1}{4} + \frac{1}{4}} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\log\left| \frac{x - \frac{1}{2}}{x} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| x - \frac{1}{2} \right| + \frac{7}{4}\text{ log } \left| x \right| + C_2 \]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 2x - 1 \right| + C_3 , \text{ where }C_3 = C_2 + \frac{7}{4}\text{ log } 2\]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 1 - 2x \right| + C_3 \]
\[ = 2 \text{ log } \left| x \right| - \frac{3}{2}\text { log } \left| 1 - 2x \right| + C_3 \]
\[\text{ Thus }, I = \frac{1}{2}\left[ x + C_1 + 2 \text{ log } \left| x \right| - \frac{3}{2}\text{ log } \left| 1 - 2x \right| + C_3 \right]\]
\[ = \frac{1}{2}x + \text{ log } \left| x \right| - \frac{3}{4}\text{ log } \left| 1 - 2x \right| + C, \text{ where  C } = \frac{1}{2}\left[ C_1 + C_3 \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.2 | Q 3 | पृष्ठ १०६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×