Advertisements
Advertisements
प्रश्न
\[\int \sin^7 x \text{ dx }\]
योग
उत्तर
∫ sin7 x dx
= ∫ sin6 x . sin x dx
= ∫ (sin2 x)3 sin x dx
= ∫ (1 – cos2 x)3 sin x dx
Let cos x = t
⇒ –sin x dx = dt
⇒ sin x dx = – dt
Now, ∫ (1 – cos2 x)3 sin x dx
= ∫ (1 – t2)3 . (–dt)
= –∫ (1 – t6 – 3t2 + 3t4) dt
\[= - \left[ t - \frac{t^7}{7} - t^3 + \frac{3 t^5}{5} \right] + C\]
\[ = - \left[ \cos x - \frac{\cos^7 x}{7} - \cos^3 x + \frac{3}{5} \cos^5 x \right] + C\]
\[ = - \cos x + \frac{1}{7} \cos^7 x + \cos^3 x - \frac{3}{5} \cos^5 x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int x^3 \cos x^4 dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan x sec^4 x dx `
` ∫ tan^5 x sec ^4 x dx `
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`