हिंदी

∫ X √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
योग

उत्तर

 

`   \text{ Let I } = ∫   { x   dx}/{\sqrt{x^2 + x + 1}}`
\[\text{ Consider, } \]
\[x = A \frac{d}{dx} \left( x^2 + x + 1 \right) + B\]
\[ \Rightarrow x = A \left( 2x + 1 \right) + B\]
\[ \Rightarrow x = \left( 2A \right) x + A + B\]
\[\text{Equating Coefficient of like terms}\]
\[2A = 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ And }\]
\[A + B = 0\]
\[ \Rightarrow \frac{1}{2} + B = 0\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[ \therefore I = \int\frac{\left( \frac{1}{2} \left( 2x + 1 \right) - \frac{1}{2} \right)}{\sqrt{x^2 + x + 1}} dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 1}{\sqrt{x^2 + x + 1}} \right)dx - \frac{1}{2}\int\frac{dx}{\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[\text{ Putting x }^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[\text{ Then, } \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \frac{1}{2}\int\frac{dx}{\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = \frac{1}{2}\left| \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right| - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{t} - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{x^2 + x + 1} - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 10 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×