English

∫ X √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
Sum

Solution

 

`   \text{ Let I } = ∫   { x   dx}/{\sqrt{x^2 + x + 1}}`
\[\text{ Consider, } \]
\[x = A \frac{d}{dx} \left( x^2 + x + 1 \right) + B\]
\[ \Rightarrow x = A \left( 2x + 1 \right) + B\]
\[ \Rightarrow x = \left( 2A \right) x + A + B\]
\[\text{Equating Coefficient of like terms}\]
\[2A = 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ And }\]
\[A + B = 0\]
\[ \Rightarrow \frac{1}{2} + B = 0\]
\[ \Rightarrow B = - \frac{1}{2}\]
\[ \therefore I = \int\frac{\left( \frac{1}{2} \left( 2x + 1 \right) - \frac{1}{2} \right)}{\sqrt{x^2 + x + 1}} dx\]
\[ = \frac{1}{2}\int\left( \frac{2x + 1}{\sqrt{x^2 + x + 1}} \right)dx - \frac{1}{2}\int\frac{dx}{\sqrt{x^2 + x + \frac{1}{4} - \frac{1}{4} + 1}}\]
\[\text{ Putting x }^2 + x + 1 = t\]
\[ \Rightarrow \left( 2x + 1 \right) dx = dt\]
\[\text{ Then, } \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} - \frac{1}{2}\int\frac{dx}{\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| + C\]
\[ = \frac{1}{2}\left| \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right| - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{t} - \frac{1}{2} \text{ log  }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]
\[ = \sqrt{x^2 + x + 1} - \frac{1}{2} \text{ log }\left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 10 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{a}{b + c e^x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×