English

∫ 3 X + 1 √ 5 − 2 X − X 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

Sum

Solution

\[\text{ Let I } = \int\frac{\left( 3x + 1 \right) dx}{\sqrt{5 - 2x - x^2}}\]

\[\text{ Consider, }3x + 1 = A \frac{d}{dx} \left( 5 - 2x - x^2 \right) + B\]

\[ \Rightarrow 3x + 1 = A \left( - 2 - 2x \right) + B\]

\[ \Rightarrow 3x + 1 = \left( - 2A \right) x - 2A + B\]

\[\text{ Equating Coefficients of like terms }\]

\[ - 2A = 3\]

\[ \Rightarrow A = - \frac{3}{2}\]

\[\text{ And }\]

\[ - 2A + B = 1\]

\[ \Rightarrow - 2 \times - \frac{3}{2} + B = 1\]

\[ \Rightarrow B = 1 - 3\]

\[ \Rightarrow B = - 2\]

\[ \therefore I = \int\left[ \frac{- \frac{3}{2} \left( - 2 - 2x \right) - 2}{\sqrt{5 - 2x - x^2}} \right]dx\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - 2x - x^2}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x \right)}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{5 - \left( x^2 + 2x + 1 - 1 \right)}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{6 - \left( x + 1 \right)^2}}\]

\[ = - \frac{3}{2}\int\frac{\left( - 2 - 2x \right) dx}{\sqrt{5 - 2x - x^2}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]

\[\text{ let 5 - 2x - x^2 = t }\]

\[ \Rightarrow \left( - 2 - 2x \right) dx = dt\]

\[ \therefore I = - \frac{3}{2}\int\frac{dt}{\sqrt{t}} - 2\int\frac{dx}{\sqrt{\left( \sqrt{6} \right)^2 - \left( x + 1 \right)^2}}\]

\[ = - \frac{3}{2} \times 2\sqrt{t} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

\[ = - 3\sqrt{5 - 2x - x^2} - 2 \sin^{- 1} \left( \frac{x + 1}{\sqrt{6}} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 5 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×