English

∫ 1 3 + 4 Cot X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{3 + 4 \cot x} dx\]
Sum

Solution

\[\text{ Let I }= \int\frac{1}{3 + 4 \cot x}dx\]
\[ = \int\frac{1}{3 + \frac{4 \cos x}{\sin x}}dx\]
\[ = \int\frac{\sin x}{3 \sin x + 4 \cos x}dx\]
\[\text{ Let sin x = A }\left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . (1)\]
\[ \Rightarrow \sin x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]
\[\text{By comparing the coefficients of both sides we get} , \]
\[3A - 4B = 1 . . . \left( 2 \right)\]
\[4A + 3B = 0 . . . \left( 3 \right)\]

Multiplying eq (2) by 3 and equation (3) by 4 , then by adding them we get

\[9A - 12B + 16A + 12B = 3 + 0\]
\[ \Rightarrow 25A = 3\]
\[ \Rightarrow A = \frac{3}{25}\]
\[\text{  Putting value of A in eq }\left( 3 \right) \text{ we get,} \]
\[4 \times \frac{3}{25} + 3B = 0\]
\[ \Rightarrow 3B = - \frac{12}{25}\]
\[ \Rightarrow B = - \frac{4}{25}\]

\[\text{ Thus, by substituting the value of A and B in eq (1) we get }\]
\[I = \int\left[ \frac{\frac{3}{25}\left( 3 \sin x + 4 \cos x \right) - \frac{4}{25}\left( 3 \cos x - 4 \sin x \right)}{3 \sin x + 4 \cos x} \right]dx\]
\[ = \frac{3}{25}\int dx - \frac{4}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{  Putting   3  sin x + 4  cos x = t}\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right)dx = dt\]
\[ \therefore I = \frac{3}{25}\int dx - \frac{4}{25}\int\frac{dt}{t}\]
\[ = \frac{3}{25}x - \frac{4}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{3x}{25} - \frac{4}{25} \text{ ln }\left| 3 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 7 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×