Advertisements
Advertisements
Question
Solution
\[\int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\text{ Let} \sin^{- 1} x = \theta\]
\[x = \sin \theta\]
\[dx = \text{ cos θ dθ }\]
\[ \therefore \int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \int \frac{\left( \sin \theta \right) . \theta}{\sqrt{1 - \sin^2 \theta}} . \text{ cos θ dθ }\]
\[ = \int \frac{\left( \sin \theta \right) . \theta}{\cos \theta} . \text{ cos θ dθ }\]
\[ = \int \theta_I . \sin_{II} \text{ θ dθ }\]
\[ = \theta\int\sin \text{ θ dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{ θ dθ }\right\}d\theta\]
\[ = \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta\]
\[ = - \theta \cos \theta + \sin \theta + C\]
\[ = - \theta \sqrt{1 - \sin^2 \theta} + \sin \theta + C\]
\[ = - \sin^{- 1} x \sqrt{1 - x^2} + x + C \left( \because \sin^{- 1} x = \theta \right)\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to