English

∫ X Sin − 1 X √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
Sum

Solution

\[\int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\text{ Let} \sin^{- 1} x = \theta\]
\[x = \sin \theta\]
\[dx =  \text{ cos   θ  dθ }\]
\[ \therefore \int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \int \frac{\left( \sin \theta \right) . \theta}{\sqrt{1 - \sin^2 \theta}} . \text{ cos   θ  dθ }\]
\[ = \int \frac{\left( \sin \theta \right) . \theta}{\cos \theta} . \text{ cos   θ  dθ }\]
\[ = \int \theta_I . \sin_{II} \text{   θ  dθ }\]
\[ = \theta\int\sin \text{    θ  dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{    θ  dθ }\right\}d\theta\]
\[ = \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta\]
\[ = - \theta \cos \theta + \sin \theta + C\]
\[ = - \theta \sqrt{1 - \sin^2 \theta} + \sin \theta + C\]
\[ = - \sin^{- 1} x \sqrt{1 - x^2} + x + C \left( \because \sin^{- 1} x = \theta \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 52 | Page 134

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

` ∫   cos  3x   cos  4x` dx  

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \sin^4 2x\ dx\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \cot^5 x\ dx\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×