English

∫ 1 √ 3 Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
Sum

Solution

\[\text{ Let I } = \int \frac{dx}{\sqrt{3} \sin x + \cos x}\]
\[\text{ Putting sin x } = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and cos x} = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{\sqrt{3}\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2\sqrt{3} \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{- \tan^2 \frac{x}{2} + 2\sqrt{3} \tan \frac{x}{2} + 1}dx\]

\[\text{ Let tan} \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{- t^2 + 2\sqrt{3}t + 1}\]
\[ = - 2\int \frac{dt}{t^2 - 2\sqrt{3}t - 1}\]
\[ = - 2\int\frac{dt}{t^2 - 2\sqrt{3}t + \left( \sqrt{3} \right)^2 - \left( \sqrt{3} \right)^2 - 1}\]
\[ = - 2\int \frac{dt}{\left( t - \sqrt{3} \right)^2 - \left( 2 \right)^2}\]
\[ = - \frac{2}{2 \times 2}\text{ log }\left| \frac{t - \sqrt{3} - 2}{t - \sqrt{3} + 2} \right| + C\]

\[= - \frac{1}{2}\text{ log}\left| \frac{\tan\frac{x}{2} - 2 - \sqrt{3}}{\tan\frac{x}{2} + 2 - \sqrt{3}} \right| + C\]
\[ = \frac{1}{2}\text{ log}\left| \frac{\tan\frac{x}{2} + 2 - \sqrt{3}}{\tan\frac{x}{2} + 2 - \sqrt{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 13 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×