Advertisements
Advertisements
Question
`int 1/(sin x - sqrt3 cos x) dx`
Sum
Solution
Given I = `int 1/(sin x - sqrt3 cos x) dx`
Let 1 = r cos θ and √3 = r sin θ
r = `sqrt(3 + 1) = 2`
And tan θ = √3 → θ = `pi/3`
=> `int 1/(sin x - sqrt3 cos x) dx = int 1/(rcos theta sin x - r sin theta cos x) dx`
= `1/r int 1/(sin (x - theta))dx`
= `1/r int cosec(x - theta)dx`
We know that `int cosec x dx = log|tan (x/2 - pi/6)| + c`
`1/2 log |tan(x/2 - pi/6)| + c`
∴ I = `int 1/(sinx - sqrt3 cos x) dx`
`1/2 log |tan (x/2 - pi/6)| + c`
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int \cos^2 \text{nx dx}\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
` ∫ tan^5 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int {cosec}^3 x\ dx\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int \tan^4 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]