Advertisements
Advertisements
Question
Solution
\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[\text{ Let } x^\frac{1}{3} = t\]
\[ \Rightarrow \frac{1}{3} x^\frac{- 2}{3} dx = dt\]
\[ \Rightarrow \frac{1}{3 x^\frac{2}{3}} dx = dt\]
\[ \Rightarrow \frac{dx}{x^\frac{2}{3}} = 3 dt\]
\[Now, \int\frac{dx}{x^\frac{2}{3} \sqrt{x^\frac{2}{3} - 2^2}}\]
\[ = 3\int\frac{dt}{\sqrt{t^2 - 2^2}}\]
\[ = 3 \text{ log } \left| t + \sqrt{t^2 - 2^2} \right| + C\]
\[ = 3 \text{ log }\left| x^\frac{1}{3} + \sqrt{x^\frac{2}{3} - 4} \right| + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`