English

∫ 1 X 2 / 3 √ X 2 / 3 − 4 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
Sum

Solution

 

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]

\[ = \int\frac{dx}{x^\frac{2}{3} \sqrt{\left( x^\frac{1}{3} \right)^2 - 2^2}}\]
\[\text{ Let } x^\frac{1}{3} = t\]
\[ \Rightarrow \frac{1}{3} x^\frac{- 2}{3} dx = dt\]
\[ \Rightarrow \frac{1}{3 x^\frac{2}{3}} dx = dt\]
\[ \Rightarrow \frac{dx}{x^\frac{2}{3}} = 3 dt\]
\[Now, \int\frac{dx}{x^\frac{2}{3} \sqrt{x^\frac{2}{3} - 2^2}}\]
\[ = 3\int\frac{dt}{\sqrt{t^2 - 2^2}}\]
\[ = 3 \text{ log } \left| t + \sqrt{t^2 - 2^2} \right| + C\]
\[ = 3 \text{ log }\left| x^\frac{1}{3} + \sqrt{x^\frac{2}{3} - 4} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 13 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×