English

∫ 2 Sin X + 3 Cos X 3 Sin X + 4 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
Sum

Solution

\[\text{ Let I }= \int\left( \frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ and  let 2   sin x + 3 cos x} = A \left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . (1)\]
\[ \Rightarrow 2 \sin x + 3 \cos x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]

By comparing the coefficients of like terms we get,

\[3A - 4B = 2 . . . \left( 2 \right)\]
\[4A - 3B = 3 . . . \left( 3 \right)\]

Multiplying eq (2) by 3 and eq (3) by 4 and then adding,

\[9A - 12B + 16A + 12B = 6 + 12\]
\[ \Rightarrow 25A = 18\]
\[ \Rightarrow A = \frac{18}{25}\]
\[\text{ Putting value of A} = \frac{18}{25} \text{ in eq} \left( 2 \right)\text{ we get, }\]
\[3 \times \frac{18}{25} - 4B = 2\]
\[ \Rightarrow \frac{54}{25} - 2 = 4B\]
\[ \Rightarrow \frac{4}{25 \times 4} = B\]
\[ \Rightarrow B = \frac{1}{25}\]

Thus, substituting the values of A,B and C in eq (1) we get ,

\[I = \int\left[ \frac{\frac{18}{25}\left( 3 \sin x + 4 \cos x \right) + \frac{1}{25} \left( 3 \cos x - 4 \sin x \right)}{\left( 3 \sin x + 4 \cos x \right)} \right]dx\]
\[ = \frac{18}{25}\int dx + \frac{1}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 3 sin x + 4 cos x = t}\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right) dx = dt\]
\[ \therefore I = \frac{18}{25}\int dx + \frac{1}{25}\int\frac{1}{t}dt\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| 3 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 6 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×