हिंदी

∫ 2 Sin X + 3 Cos X 3 Sin X + 4 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
योग

उत्तर

\[\text{ Let I }= \int\left( \frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ and  let 2   sin x + 3 cos x} = A \left( 3 \sin x + 4 \cos x \right) + B \left( 3 \cos x - 4 \sin x \right) . . . (1)\]
\[ \Rightarrow 2 \sin x + 3 \cos x = \left( 3A - 4B \right) \sin x + \left( 4A + 3B \right) \cos x\]

By comparing the coefficients of like terms we get,

\[3A - 4B = 2 . . . \left( 2 \right)\]
\[4A - 3B = 3 . . . \left( 3 \right)\]

Multiplying eq (2) by 3 and eq (3) by 4 and then adding,

\[9A - 12B + 16A + 12B = 6 + 12\]
\[ \Rightarrow 25A = 18\]
\[ \Rightarrow A = \frac{18}{25}\]
\[\text{ Putting value of A} = \frac{18}{25} \text{ in eq} \left( 2 \right)\text{ we get, }\]
\[3 \times \frac{18}{25} - 4B = 2\]
\[ \Rightarrow \frac{54}{25} - 2 = 4B\]
\[ \Rightarrow \frac{4}{25 \times 4} = B\]
\[ \Rightarrow B = \frac{1}{25}\]

Thus, substituting the values of A,B and C in eq (1) we get ,

\[I = \int\left[ \frac{\frac{18}{25}\left( 3 \sin x + 4 \cos x \right) + \frac{1}{25} \left( 3 \cos x - 4 \sin x \right)}{\left( 3 \sin x + 4 \cos x \right)} \right]dx\]
\[ = \frac{18}{25}\int dx + \frac{1}{25}\int\left( \frac{3 \cos x - 4 \sin x}{3 \sin x + 4 \cos x} \right)dx\]
\[\text{ Putting 3 sin x + 4 cos x = t}\]
\[ \Rightarrow \left( 3 \cos x - 4 \sin x \right) dx = dt\]
\[ \therefore I = \frac{18}{25}\int dx + \frac{1}{25}\int\frac{1}{t}dt\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| t \right| + C\]
\[ = \frac{18x}{25} + \frac{1}{25} \text{ ln }\left| 3 \sin x + 4 \cos x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 6 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×