हिंदी

∫ 1 ( X − 1 ) ( X + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[ \Rightarrow 1 = A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)\]

Putting\ x - 1 = 0

\[ \Rightarrow x = 1\]

\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow 1 = A \times 6\]

\[ \Rightarrow A = \frac{1}{6}\]

Putting x + 1 = 0

\[ \Rightarrow x = - 1\]

\[1 = A \times 0 + B \left( - 2 \right) \left( 1 \right) + C \times 0\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting x + 2 = 0

\[ \Rightarrow x = - 2\]

\[1 = A \times 0 + B \times 0 + C \left( - 2 - 1 \right) \left( - 2 + 1 \right)\]

\[ \Rightarrow 1 = C \times 3\]

\[ \Rightarrow C = \frac{1}{3}\]

\[ \therefore I = \frac{1}{6}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{3}\int\frac{dx}{x + 2}\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{3} \log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{3}{6} \log \left| x + 1 \right| + \frac{2}{6}\log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \left[ \log \left| x - 1 \right| - 3 \log \left| x + 1 \right| + 2 \log \left| x + 2 \right| \right] + C\]

\[ = \frac{1}{6}\log \left| \frac{\left( x - 1 \right) \left( x + 2 \right)^2}{\left( x + 1 \right)^3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 17 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int x^3 \cos x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×