मराठी

∫ 1 ( X − 1 ) ( X + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)}\]

\[ \Rightarrow 1 = A \left( x + 1 \right) \left( x + 2 \right) + B \left( x - 1 \right) \left( x + 2 \right) + C \left( x - 1 \right) \left( x + 1 \right)\]

Putting\ x - 1 = 0

\[ \Rightarrow x = 1\]

\[1 = A \left( 1 + 1 \right) \left( 1 + 2 \right) + B \times 0 + C \times 0\]

\[ \Rightarrow 1 = A \times 6\]

\[ \Rightarrow A = \frac{1}{6}\]

Putting x + 1 = 0

\[ \Rightarrow x = - 1\]

\[1 = A \times 0 + B \left( - 2 \right) \left( 1 \right) + C \times 0\]

\[ \Rightarrow B = - \frac{1}{2}\]

Putting x + 2 = 0

\[ \Rightarrow x = - 2\]

\[1 = A \times 0 + B \times 0 + C \left( - 2 - 1 \right) \left( - 2 + 1 \right)\]

\[ \Rightarrow 1 = C \times 3\]

\[ \Rightarrow C = \frac{1}{3}\]

\[ \therefore I = \frac{1}{6}\int\frac{dx}{x - 1} - \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{3}\int\frac{dx}{x + 2}\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{1}{2} \log \left| x + 1 \right| + \frac{1}{3} \log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \log \left| x - 1 \right| - \frac{3}{6} \log \left| x + 1 \right| + \frac{2}{6}\log \left| x + 2 \right| + C\]

\[ = \frac{1}{6} \left[ \log \left| x - 1 \right| - 3 \log \left| x + 1 \right| + 2 \log \left| x + 2 \right| \right] + C\]

\[ = \frac{1}{6}\log \left| \frac{\left( x - 1 \right) \left( x + 2 \right)^2}{\left( x + 1 \right)^3} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 17 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


`∫     cos ^4  2x   dx `


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x \sin x \cos x\ dx\]

 


 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×