मराठी

∫ 5 X + 3 √ X 2 + 4 X + 10 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\left( 5x + 3 \right) dx}{\sqrt{x^2 + 4x + 10}}\]
\[\text{ Consider, }\]
\[5x + 3 = A \frac{d}{dx} \left( x^2 + 4x + 10 \right) + B\]
\[ \Rightarrow 5x + 3 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 5x + 3 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2  A} = 5\]
\[ \Rightarrow A = \frac{5}{2}\]
\[\text{ And }\]
\[4A + B = 3\]
\[ \Rightarrow 4 \times \frac{5}{2} + B = 3\]
\[ \Rightarrow B = - 7\]
\[ \therefore I = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 10}}\]
\[ = \frac{5}{2}\int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 10}} - 7\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 + \left( \sqrt{6} \right)^2}}\]
\[\text{ Putting,} x^2 + 4x + 10 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} - 7 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 + 6} \right| + C\]
\[ = \frac{5}{2}\int t^{- \frac{1}{2}} dt - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = \frac{5}{2} \times 2\sqrt{t} - 7 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]
\[ = 5\sqrt{x^2 + 4x + 10} - 7 \text{ log }\left| x + 2 + \sqrt{x^2 + 4x + 10} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 17 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^x \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int \sin^4 2x\ dx\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×