मराठी

∫ X 2 √ 1 − X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
बेरीज

उत्तर

Let I = `int x^2/[ sqrt( x - 1) ] `dx
Substituting x - 1 = t and dx = dt, we get,

I = `int  ( t + 1)^2/sqrt t`dx

= `int ( t^2 + 1 +2t )/ sqrtt` dt

= `int ( t^(3/2) + t^(-1/2) + 2t^(-1/2) )`dt

= `2/5t^(5/2) + 2t^(1/2) + 4/3t^(3/2)` + c

= `[ 6t^(5/2) + 30t^(1/2) + 20t^(3/2)]/15`+ c

= `2/15  t^(1/2)( 3t^2 + 15 + 10t )` + c

= `2/15 sqrt( x - 1 )[ 3( x -1 )^2 + 15 + 10( x - 1)]`+ c

= `2/15 sqrt( x - 1 )[ 3( x^2  + 1 - 2x ) + 15 + 10x - 10]`+ c

= `2/15 sqrt( x - 1 )[  3x^2  + 3 - 6x + 15 + 10x - 10]`+ c

= `2/15 sqrt( x - 1 ) [  3x^2 + 4x + 8 ]`+ c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 7 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫      tan^5    x   dx `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×