Advertisements
Advertisements
प्रश्न
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
बेरीज
उत्तर
∫ cot5 x . cosec4 x dx
= ∫ cot5 x . cosec2 x . cosec2 x dx
= ∫ cot5 x . (1 + cot2 x) . cosec2 x dx
Let cot x = t
⇒ – cosec2 x dx = dt
⇒ cosec2 x dx = –dt
Now, ∫ cot5 x . cosec4 x dx
= ∫ t5 (1 + t2) dt
= ∫(t5 + t7) dt
\[= - \left[ \frac{t^6}{6} + \frac{t^8}{8} \right] + C\]
\[ = - \left[ \frac{\cot^6 x}{6} + \frac{\cot^8 x}{8} \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
`∫ cos ^4 2x dx `
\[\int \cos^2 \text{nx dx}\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int x \cos x\ dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int x^3 \cos x^2 dx\]
\[\int x \sin x \cos x\ dx\]
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]