मराठी

∫ X − 1 / 3 + √ X + 2 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
बेरीज

उत्तर

\[\int \left( \frac{x^{- \frac{1}{3}} + \sqrt{x} + 2}{x^\frac{1}{3}} \right)dx\]
\[ = \int \left( \frac{x^{- \frac{1}{3}}}{x^\frac{1}{3}} + \frac{x^\frac{1}{2}}{x^\frac{1}{3}} + \frac{2}{x^\frac{1}{3}} \right)dx\]
\[ = \int\left( x^{- \frac{2}{3}} + x^\frac{1}{6} + 2 x^{- \frac{1}{3}} \right)dx\]
\[ = \left[ \frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1} + \frac{x^\frac{1}{6} + 1}{\frac{1}{6} + 1} + 2\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right]\]
\[ = \left[ \frac{x^\frac{1}{3}}{\frac{1}{3}} + \frac{x^\frac{7}{6}}{\frac{7}{6}} + 3 x^\frac{2}{3} \right] + C\]
\[ = 3 x^\frac{1}{3} + \frac{6}{7} x^\frac{7}{6} + 3 x^\frac{2}{3} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 13 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


` ∫  sec^6   x  tan    x   dx `

\[\int \sin^5 x \cos x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×