Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \left( \frac{x^{- \frac{1}{3}} + \sqrt{x} + 2}{x^\frac{1}{3}} \right)dx\]
\[ = \int \left( \frac{x^{- \frac{1}{3}}}{x^\frac{1}{3}} + \frac{x^\frac{1}{2}}{x^\frac{1}{3}} + \frac{2}{x^\frac{1}{3}} \right)dx\]
\[ = \int\left( x^{- \frac{2}{3}} + x^\frac{1}{6} + 2 x^{- \frac{1}{3}} \right)dx\]
\[ = \left[ \frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1} + \frac{x^\frac{1}{6} + 1}{\frac{1}{6} + 1} + 2\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right]\]
\[ = \left[ \frac{x^\frac{1}{3}}{\frac{1}{3}} + \frac{x^\frac{7}{6}}{\frac{7}{6}} + 3 x^\frac{2}{3} \right] + C\]
\[ = 3 x^\frac{1}{3} + \frac{6}{7} x^\frac{7}{6} + 3 x^\frac{2}{3} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]