Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int x\sqrt{x^4 + 1}\text{ dx}\]
\[ = \int x\sqrt{\left( x^2 \right)^2 + 1}\text{ dx}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow \text{ 2 x dx}=\text{ dt }\]
\[ \Rightarrow x \text{ dx}= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\sqrt{t^2 + 1}\text{ dt }\]
\[ = \frac{1}{2}\int\sqrt{t^2 + 1^2}\text{ dt}\]
\[ = \frac{1}{2} \left[ \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2} \text{ log }\left| t + \sqrt{t^2 + 1} \right| \right] + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \sqrt{x^4 + 1} + \frac{1}{2} \text{ log }\left| x^2 + \sqrt{x^4 + 1} \right| \right] + C\]
\[ = \frac{x^2}{4} \sqrt{x^4 + 1} + \frac{1}{4} \text{ log} \left| x^2 + \sqrt{x^4 + 1} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
Evaluate the following integrals:
Evaluate the following integral:
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]