हिंदी

∫ X √ X 4 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x\sqrt{x^4 + 1} \text{ dx}\]
योग

उत्तर

\[\text{ Let I } = \int x\sqrt{x^4 + 1}\text{ dx}\]
\[ = \int x\sqrt{\left( x^2 \right)^2 + 1}\text{ dx}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow  \text{        2 x dx}=\text{  dt }\]
\[ \Rightarrow x \text{ dx}= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\sqrt{t^2 + 1}\text{ dt }\]
\[ = \frac{1}{2}\int\sqrt{t^2 + 1^2}\text{ dt}\]
\[ = \frac{1}{2} \left[ \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2} \text{ log }\left| t + \sqrt{t^2 + 1} \right| \right] + C\]
\[ = \frac{1}{2}\left[ \frac{x^2}{2} \sqrt{x^4 + 1} + \frac{1}{2} \text{ log }\left| x^2 + \sqrt{x^4 + 1} \right| \right] + C\]
\[ = \frac{x^2}{4} \sqrt{x^4 + 1} + \frac{1}{4} \text{ log} \left| x^2 + \sqrt{x^4 + 1} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.28 [पृष्ठ १५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.28 | Q 12 | पृष्ठ १५४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×