हिंदी

∫ 1 √ 5 − 4 X − 2 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
योग

उत्तर

\[\int\frac{dx}{\sqrt{5 - 4x - 2 x^2}}\]
\[ = \int\frac{dx}{\sqrt{2\left[ \frac{5}{2} - 2x - x^2 \right]}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{5}{2} - 2x - x^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{5}{2} - \left( x^2 + 2x \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{5}{2} - \left( x^2 + 2x + 1 - 1 \right)}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{5}{2} - \left( x + 1 \right)^2 + 1}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\frac{7}{2} - \left( x + 1 \right)^2}}\]
\[ = \frac{1}{\sqrt{2}}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{7}}{\sqrt{2}} \right)^2 - \left( x + 1 \right)^2}}\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left( \frac{\left( x + 1 \right)\sqrt{2}}{\sqrt{7}} \right) + C\]
\[ = \frac{1}{\sqrt{2}} \sin^{- 1} \left( \sqrt{\frac{2}{7}}\left( x + 1 \right) \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.17 | Q 3 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×