Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\text{sin }\left( mx \right) \cdot \text{cos} \left( nx \right) dx\]
\[ = \frac{1}{2}\int2 \text{sin} \left( mx \right) \cdot \text{cos} \left( nx \right)dx\]
\[ = \frac{1}{2}\int\left[ \text{sin} \left( mx + nx \right) + \text{sin} \left( mx - nx \right) \right]dx \left[ \therefore \text{2 sin A }\cdot \text{cos B} = \text{sin} \left( A + B \right) + \text{sin} \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ - \frac{\text{cos} \left( m + n \right)x}{m + n} - \frac{\text{cos} \left( m - n \right)x}{m - n} \right] + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
`∫ cos ^4 2x dx `
Integrate the following integrals:
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int \left( e^x + 1 \right)^2 e^x dx\]