हिंदी

∫ Sin M X Cos N X D X M ≠ N - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
योग

उत्तर

\[\int\text{sin }\left( mx \right) \cdot \text{cos} \left( nx \right) dx\]
\[ = \frac{1}{2}\int2 \text{sin} \left( mx \right) \cdot \text{cos} \left( nx \right)dx\]
\[ = \frac{1}{2}\int\left[ \text{sin} \left( mx + nx \right) + \text{sin} \left( mx - nx \right) \right]dx \left[ \therefore \text{2 sin A }\cdot \text{cos B} = \text{sin} \left( A + B \right) + \text{sin} \left( A - B \right) \right]\]
\[ = \frac{1}{2}\left[ - \frac{\text{cos} \left( m + n \right)x}{m + n} - \frac{\text{cos} \left( m - n \right)x}{m - n} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.07 [पृष्ठ ३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.07 | Q 4 | पृष्ठ ३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×