हिंदी

∫ 3 + 2 Cos X + 4 Sin X 2 Sin X + Cos X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
योग

उत्तर

\[\text{ Let I }= \int\left( \frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \right)dx\]
\[\text{ Let 3 }+ 2 \cos x + 4 \sin x = A \left( 2 \sin x + \cos x + 3 \right) + B \left( 2 \cos x - \sin x \right) + C\]
\[ \Rightarrow 3 + 2 \cos x + 4 \sin x = \left( 2A - B \right) \sin x + \left( A + 2B \right) \cos x + 3A + C\]

Comparing the coefficients of like terms

\[2A - B = 4 . . . \left( 1 \right)\]
\[A + 2B = 2 . . . (2)\]
\[3A + C = 3 . . . (3)\]

Multiplying eq (1) by 2 and adding it to eq (2) we get ,

\[\Rightarrow 4A - 2B + A + 2B = 8 + 2\]
\[ \Rightarrow 5A = 10\]
\[ \Rightarrow A = 2\]

Putting value of A = 2 in  eq (1)

\[\Rightarrow 2 \times 2 - B = 4\]
\[ \Rightarrow B = 0\]
\[\text{ Putting  value of   A   in eq (3) }\]
\[ \Rightarrow 3 \times 2 + C = 3\]
\[ \Rightarrow C = - 3\]

\[\therefore I = ∫ \left[ \frac{2 \left( 2 \sin x + \cos x + 3 \right) - 3}{2 \sin x + \cos x + 3} \right]dx\]
\[ = 2\ ∫   dx - 3\ ∫ \frac{1}{2 \sin x + \cos x + 3}dx\]
\[\text{ Substituting sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = 2\ ∫   dx - 3\ ∫  \frac{1}{2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + 3}dx\]
\[ = 2\  ∫   dx - 3\ ∫  \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{4 \tan \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right) + 3 \left( 1 + \tan^2 \frac{x}{2} \right)}dx\]
\[ = 2\  ∫   dx - 3\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{2 \tan^2 \left( \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 4} dx\]
\[ = 2\ ∫   dx - \frac{3}{2}\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 2}dx\]
\[\text{  Putting tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = 2\ ∫  dx - \frac{3}{2}\ ∫ \frac{2}{t^2 + 2t + 2} dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{t^2 + 2t + 1 + 1}dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{\left( t + 1 \right)^2 + \left( 1 \right)^2}dt\]
\[ = 2x - \frac{3}{1} \tan^{- 1} \left( \frac{t + 1}{1} \right) + C\]
\[ = 2x - 3 \tan^{- 1} \left( \tan \frac{x}{2} + 1 \right) + C \left[ \because t = \tan \frac{x}{2} \right]\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.24 | Q 3 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×