हिंदी

∫ √ a 2 − X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{a^2 - x^2}\text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int\sqrt{a^2 - x^2} \text{  dx }\]
\[ = \int {1  _{II} \cdot} \sqrt{a^2 { _I} - x^2} dx\]
\[ = \sqrt{a^2 - x^2}_{} \int1 \text{  dx }- \int\left( \frac{d}{dx}\left( \sqrt{a^2 - x^2} \right)\int1\text{  dx } \right)dx\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\frac{1 \times 2x}{2 \sqrt{a^2 - x^2}} \cdot x\text{  dx }\]
\[ = \sqrt{a^2 - x^2} \cdot x + \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{a^2 - x^2}} \right) dx\]
\[ = x\sqrt{a^2 - x^2} - \int\sqrt{a^2 - x^2} dx + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ = x\sqrt{a^2 - x^2} - I + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \therefore 2I = x\sqrt{a^2 - x^2} + a^2 \int\frac{1}{\sqrt{a^2 - x^2}}dx\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \left( \frac{x}{a} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 86 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int \sin^2\text{ b x dx}\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×