हिंदी

∫ Sin 4 X − 2 1 − Cos 4 X E 2 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
योग

उत्तर

\[\text{We have}, \]
\[I = \int\left( \frac{\sin 4x - 2}{1 - \cos 4x} \right) e^{2x} \text{ dx}\]
\[ = \int\left( \frac{2 \sin 2x \cos 2x - 2}{2 \sin^2 2x} \right) e^{2x} \text{ dx}\]
\[ = \int\left[ \cot \left( 2x \right) - {cosec}^2 \left( 2x \right) \right] e^{2x} \text{ dx}\]
\[\text{ Let e}^{2x} \cot \left( 2x \right) = t\]
\[ \Rightarrow \left[ 2 e^{2x} \cot \left( 2x \right) + e^{2x} \left\{ - {cosec}^2 \left( 2x \right) \right\} \times 2 \right] dx = dt\]
\[ \Rightarrow e^{2x} \left[ \cot 2x - {cosec}^2 \left( 2x \right) \right] dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int dt\]
\[ = \frac{t}{2} + C\]
\[ = \frac{1}{2}\text{  e}^{2x} \text{ cot } \left( \text{ 2x} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 129 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×