हिंदी

∫ ( 2 X + 3 X ) 2 6 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 
योग

उत्तर

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x}dx\]
\[ = \int\left[ \frac{\left( 2^x \right)^2 + \left( 3^x \right)^2 + 2 \cdot 2^x \cdot 3^x}{6^x} \right]dx\]
\[ = \int\left( \frac{\left( 2^x \right)^2}{2^x \cdot 3^x} + \frac{\left( 3^x \right)^2}{2^x \cdot 3^x} + \frac{2 \cdot 2^x \cdot 3^x}{2^x \cdot 3^x} \right)dx\]
\[ \Rightarrow \int\left[ \left( \frac{2}{3} \right)^x + \left( \frac{3}{2} \right)^x + 2 \right]dx\]
\[ \Rightarrow \frac{\left( \frac{2}{3} \right)^x}{\text{ ln }\left( \frac{2}{3} \right)} + \frac{\left( \frac{3}{2} \right)^x}{\text{ln } \frac{3}{2}} + 2x + C ...........\left( \because \int a^x dx = \frac{a^x}{\text{ ln } a} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 6 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×