Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x}dx\]
\[ = \int\left[ \frac{\left( 2^x \right)^2 + \left( 3^x \right)^2 + 2 \cdot 2^x \cdot 3^x}{6^x} \right]dx\]
\[ = \int\left( \frac{\left( 2^x \right)^2}{2^x \cdot 3^x} + \frac{\left( 3^x \right)^2}{2^x \cdot 3^x} + \frac{2 \cdot 2^x \cdot 3^x}{2^x \cdot 3^x} \right)dx\]
\[ \Rightarrow \int\left[ \left( \frac{2}{3} \right)^x + \left( \frac{3}{2} \right)^x + 2 \right]dx\]
\[ \Rightarrow \frac{\left( \frac{2}{3} \right)^x}{\text{ ln }\left( \frac{2}{3} \right)} + \frac{\left( \frac{3}{2} \right)^x}{\text{ln } \frac{3}{2}} + 2x + C ...........\left( \because \int a^x dx = \frac{a^x}{\text{ ln } a} \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Write a value of
\[\int \sec^4 x\ dx\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]