Advertisements
Advertisements
प्रश्न
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
योग
उत्तर
\[\int\ x \left( 1 - x \right)^{23} dx\]
\[\text{Let 1 - x }= t \]
\[ \Rightarrow x = 1 - t\]
\[ \Rightarrow 1 = - \frac{dt}{dx}\]
\[ \Rightarrow dx = - dt\]
\[Now, \int\ x \left( 1 - x \right)^{23} dx\]
\[ = - \int\left( 1 - t \right) \cdot t^{23} dt\]
\[ = - \int\left( t^{23} - t^{24} \right)dt\]
\[ = \int\left( t^{24} - t^{23} \right) dt\]
\[ = \frac{t^{25}}{25} - \frac{t^{24}}{24} + C\]
\[ = \frac{24 t^{25} - 25 t^{24}}{600} + C\]
\[ = \frac{t^{24}}{600}\left[ 24t - 25 \right] + C\]
\[ = \frac{\left( 1 - x \right)^{24}}{600} \left[ 24\left( 1 - x \right) - 25 \right] + C\]
\[ = \frac{- 1}{600} \left( 1 - x \right)^{24} \left( 1 + 24x \right) + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int \cot^6 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\log x}{x^n}\text{ dx }\]
\[\int x^2 \tan^{- 1} x\text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{7 + 5 \cos x} dx =\]
\[\int\frac{x^3}{x + 1}dx\] is equal to
\[\int \tan^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]