Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\left( \frac{\sin^3 x - \cos^3 x}{\sin^2 x \cdot \cos^2 x} \right)dx\]
\[ = \int\frac{\sin^3 x}{\sin^2 x \cdot \cos^2 x}dx - \int\frac{\cos^3 x}{\sin^2 x \cdot \cos^2 x}dx\]
\[ = \int\frac{\sin x}{\cos^2 x}dx - \int\frac{\cos x}{\sin^2 x}dx\]
\[ = \int\frac{\sin x}{\cos x} \times \frac{1}{\cos x}dx - \int\frac{\cos x}{\sin x} \times \frac{1}{\sin x}dx\]
`=∫ sec x tan x dx - ∫ "cosec" x cot x dx`
\[ = \sec x - \left( - \text{cosec x} \right) + C\]
\[ = \sec x + \text{cosec x }+ C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \tan^2 \left( 2x - 3 \right) dx\]
Integrate the following integrals:
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^5 x dx `
Evaluate the following integral:
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]