हिंदी

∫ 5 Cos 3 X + 6 Sin 3 X 2 Sin 2 X Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]
योग

उत्तर

\[\int\left( \frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5 \cos^3 x}{2 \sin^2 x \cos^2 x} + \frac{6 \sin^3 x}{2 \sin^2 x \cos^2 x} \right)dx\]
\[ = \int\left( \frac{5}{2} \frac{\cos x}{\sin^2 x} + 3\frac{\sin x}{\cos^2 x} \right)dx\]
\[ = \frac{5}{2}\int\left( \frac{\cos x}{\sin x} \times \frac{1}{\sin x} \right)dx + 3\int\frac{\sin x}{\cos x} \times \frac{1}{\cos x}dx\]
`= {5}/{2}∫("cosec  "x   cot   x ) dx + 3  ∫  sec  x  tan  x  dx`
\[ = \frac{5}{2}\left( - \text{cosec     x} \right) +  3 \sec x + C\]
\[ = - \frac{5}{2}\text{cosec x} + 3 \sec x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 24 | पृष्ठ १५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×