हिंदी

∫ ( 2 − 3 X ) ( 3 + 2 X ) ( 1 − 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]
योग

उत्तर

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right)\left( 1 - 2x \right)dx\]
\[ = \int\left( 2 - 3x \right) \left( 3 - 6x + 2x - 4 x^2 \right)dx\]
\[ = \int\left( 2 - 3x \right) \left( - 4 x^2 - 4x + 3 \right)dx\]
\[ = \int\left( - 8 x^2 - 8x + 6 + 12 x^3 + 12 x^2 - 9x \right)dx\]
\[ = \int\left( 12 x^3 + 4 x^2 - 17x + 6 \right)dx\]
\[ = \frac{12 x^4}{4} + \frac{4 x^3}{3} - \frac{17 x^2}{2} + 6x + C\]
\[ = 3 x^4 + \frac{4}{3} x^3 - \frac{17}{2} x^2 + 6x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.02 | Q 4 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int \cot^5 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×