Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
योग
उत्तर
\[\text{ Let I } = \int\frac{1}{5 - 4 \sin x}dx\]
\[\text{ Putting sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{1}{5 - 4 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} - 8 \tan \frac{x}{2} + 5}dx\]
\[\text{ Putting tan }\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]
\[\Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2 dt}\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
` ∫ cos 3x cos 4x` dx
` ∫ cos mx cos nx dx `
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ tan^5 x sec ^4 x dx `
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int \cot^6 x \text{ dx }\]
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int \sec^4 x\ dx\]
\[\int \sec^6 x\ dx\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]