हिंदी

∫ 1 5 − 4 Sin X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{1}{5 - 4 \sin x}dx\]

\[\text{ Putting sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]

\[ \therefore I = \int\frac{1}{5 - 4 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]

\[ = \int\frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} - 8 \tan \frac{x}{2} + 5}dx\]

\[\text{ Putting  tan }\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]

\[\Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2 dt}\]
\[ \therefore I = 2\int\frac{1}{5 t^2 - 8t + 5}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8}{5}t + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{t^2 - \frac{8t}{5} + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}dt\]
\[ = \frac{2}{5}\int\frac{1}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}dt\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C .................\left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \text{ tan}^{- 1} \frac{x}{a} + C \right]\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \frac{x}{2} - 4}{3} \right) + C ......\left[ \because t = \tan \frac{x}{2} \right]\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 69 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫   cos  3x   cos  4x` dx  

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

` ∫    \sqrt{tan x}     sec^4  x   dx `


\[\int \cot^6 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \sec^4 x\ dx\]


\[\int \sec^6 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×