हिंदी

∫ Sin 8 X √ 9 + Sin 4 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
योग

उत्तर

` ∫   {  sin  8x   }/{\sqrt{ 9 + sin^4  4x  }} `
\[ \Rightarrow \int\frac{2 \sin \left( 4x \right) \cdot \cos \left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[\text{ let }\sin^2 \left( 4x \right) = t\]
\[ \Rightarrow 2 \text{ sin }\left( \text{ 4x } \right) \cdot \cos 4x \times \text{ 4 dx } = dt\]
\[ \Rightarrow 2 \text{ sin } \left( 4x \right) \cos \left( \text{ 4x }\right) dx = \frac{dt}{4}\]
\[Now, \int\frac{2 \text{ sin   }\left( 4x \right) \cdot \text{ cos }\left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[ = \frac{1}{4}\int\frac{dt}{\sqrt{9 + t^2}}\]


\[ = \frac{1}{4}\int\frac{dt}{\sqrt{3^2 + t^2}}\]
\[ = \frac{1}{4} \text{ log }\left| t + \sqrt{3^2 + t^2} \right| + C\]
\[ = \frac{1}{4} \text{ log } \left| \sin^2 4x + \sqrt{9 + \sin^4 4x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.18 | Q 8 | पृष्ठ ९९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×