हिंदी

∫ Sin 6 X Cos X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{\sin^6 x \cdot}{\cos x}dx\]
\[ = \int\frac{\sin^6 x \cdot \cos x}{\cos^2 x}dx\]
\[ = \int\frac{\sin^6 x}{\left( 1 - \sin^2 x \right)}\cos \text{  x dx }\]
\[\text{  Putting  sin x = t}\]
\[ \Rightarrow \text{ cos  x  dx = dt}\]
\[ \therefore I = \int\frac{t^6}{\left( 1 - t^2 \right)}dt\]
\[ = \int\left( \frac{t^6 - 1 + 1}{1 - t^2} \right) dt\]
\[ = \int\frac{\left[ \left( t^2 \right)^3 - 1^3 \right]}{1 - t^2}dt + \int\frac{1}{1 - t^2}dt\]
\[ = \int\frac{\left( t^2 - 1 \right) \left( 1 + t^2 + t^4 \right)}{\left( 1 - t^2 \right)} + \int\frac{1}{1 - t^2}dt\]
\[ = - \int\left( t^4 + t^2 + 1 \right)dt + \int\frac{1}{1 - t^2}dt\]
\[ = - \left[ \frac{t^5}{5} + \frac{t^3}{3} + t \right] + \frac{1}{2} \text{ ln } \left| \frac{1 + t}{1 - t} \right| + C\]
\[ = - \frac{1}{5} \sin^5 x - \frac{1}{3} \sin^3 x - \sin x + \frac{1}{2} \text{ ln }\left| \frac{1 + \sin x}{1 - \sin x} \right| + C ...........\left[ \because t = \sin x \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 78 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×