हिंदी

∫ ( 2 X + 3 ) √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int \left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]
\[\text{    Also }, 2x + 3 = \lambda\frac{d}{dx}\left( x^2 + 4x + 3 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \lambda\left( 2x + 4 \right) + \mu\]
\[ \Rightarrow 2x + 3 = \left( 2\lambda \right)x + 4\lambda + \mu\]
\[\text{Equating coefficient of like terms} . \]
\[2\lambda = 2 \]
\[ \Rightarrow \lambda = 1\]
\[\text{ And }\]
\[4\lambda + \mu = 3\]
\[ \Rightarrow 4 + \mu = 3\]
\[ \Rightarrow \mu = - 1\]
\[ \therefore I = \int \left( 2x + 4 - 1 \right) \sqrt{x^2 + 4x + 3}\text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3}dx - \int\sqrt{x^2 + 4x + 3} \text{  dx }\]
\[ = \int \left( 2x + 4 \right) \sqrt{x^2 + 4x + 3} \text{  dx }- \int\sqrt{x^2 + 4x + 4 - 1} \text{  dx }\]
\[ = \int\left( 2x + 4 \right) \sqrt{x^2 + 4x + 3dx} - \int\sqrt{\left( x + 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right)dx = dt\]
\[\text{ Then,} \]
\[I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x + 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x + 2}{2}\sqrt{\left( x + 2 \right)^2 - 1} - \frac{1^2}{2}\text{ log } \left| \left( x + 2 \right) + \sqrt{\left( x + 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 + 4x + 3 \right)^\frac{3}{2} - \frac{1}{2}\left[ \left( x + 2 \right) \sqrt{x^2 + 4x + 3} - \text{ log} \left| \left( x + 2 \right) + \sqrt{x^2 + 4x + 3} \right| \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 8 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


` ∫  sec^6   x  tan    x   dx `

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×