Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
योग
उत्तर
\[\int\frac{dx}{\left( \sqrt{x + a} + \sqrt{x + b} \right)}\]
\[ = \int\frac{\left( \sqrt{x + a} - \sqrt{x - b} \right)}{\left( \sqrt{x + a} + \sqrt{x + b} \right)\left( \sqrt{x + a} - \sqrt{x + b} \right)}dx\]
\[ = \int\frac{\left( \sqrt{x + a} - \sqrt{x + b} \right)}{\left( x + a \right) - \left( x + b \right)}dx\]
\[ = \frac{1}{a - b}\int \left( x + a \right)^\frac{1}{2} - \frac{1}{a - b}\int \left( x + b \right)^\frac{1}{2} dx\]
` = 1/ ((a-b)) [ [(x+a ) ^ {1/2+1}] / [1/2 + 1]] ` - `1/(a-b) [[(x+b ) ^ {1/2+1}] / [1/2 + 1]] `
\[ = \frac{2}{3\left( a - b \right)}\left[ \left( x + a \right)^\frac{3}{2} - \left( x + b \right)^\frac{3}{2} \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]
\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan^3 x sec^2 x dx `
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int x^3 \cos x^2 dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int x \sin x \cos 2x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]