Advertisements
Advertisements
प्रश्न
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
बेरीज
उत्तर
\[\int\frac{dx}{\left( \sqrt{x + a} + \sqrt{x + b} \right)}\]
\[ = \int\frac{\left( \sqrt{x + a} - \sqrt{x - b} \right)}{\left( \sqrt{x + a} + \sqrt{x + b} \right)\left( \sqrt{x + a} - \sqrt{x + b} \right)}dx\]
\[ = \int\frac{\left( \sqrt{x + a} - \sqrt{x + b} \right)}{\left( x + a \right) - \left( x + b \right)}dx\]
\[ = \frac{1}{a - b}\int \left( x + a \right)^\frac{1}{2} - \frac{1}{a - b}\int \left( x + b \right)^\frac{1}{2} dx\]
` = 1/ ((a-b)) [ [(x+a ) ^ {1/2+1}] / [1/2 + 1]] ` - `1/(a-b) [[(x+b ) ^ {1/2+1}] / [1/2 + 1]] `
\[ = \frac{2}{3\left( a - b \right)}\left[ \left( x + a \right)^\frac{3}{2} - \left( x + b \right)^\frac{3}{2} \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \sin^2 \frac{x}{2} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\left( x - 1 \right) e^{- x} dx\] is equal to
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]