Advertisements
Advertisements
प्रश्न
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
बेरीज
उत्तर
\[\text{Let I} = \int\frac{\cos x}{2 + 3\sin x}dx\]
\[\text{Putting }\sin x = t \]
\[ \Rightarrow \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \text{cos x dx} = dt\]
\[ \therefore I = \int\frac{dt}{2 + 3t}\]
\[ = \frac{1}{3}\text{ln }\left| 2 + 3t \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{1}{3} \text{ln} \left| 2 + 3 \sin x \right| + C \left[ \because t = \sin x \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]
\[\int \cot^6 x \text{ dx }\]
\[\int \sin^5 x \cos x \text{ dx }\]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\sqrt{3 x^2 + 4x + 1}\text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`