Advertisements
Advertisements
प्रश्न
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
बेरीज
उत्तर
\[\text{ Let I }= \int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right)dx\]
\[\text{ Put log x }= t\]
\[ \Rightarrow x = e^t \]
\[ \Rightarrow dx = e^t dt\]
\[ \therefore I = \int e^t \left( \frac{1}{t} - \frac{1}{t^2} \right)dt\]
\[\text{ Here}, f(t) = \frac{1}{t}\]
\[ \Rightarrow f'(t) = \frac{- 1}{t^2}\]
\[\text{ let e} ^t \times \frac{1}{t} = p\]
\[\text{ Diff both sides w . r . t t}\]
\[\left( e^t \times \frac{1}{t} + e^t \times \frac{- 1}{t^2} \right)dt = dp\]
\[ \therefore I = \int dp\]
\[ = p + C\]
\[ = \frac{e^t}{t} + C\]
\[ = \frac{x}{\log x} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\left( x^e + e^x + e^e \right) dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
\[\int \sin^2\text{ b x dx}\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \sec x \left( 1 + \tan x \right) dx\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int \tan^4 x\ dx\]
\[\int \cot^4 x\ dx\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]