English

∫ ( 1 Log X − 1 ( Log X ) 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
Sum

Solution

\[\text{  Let I  }= \int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right)dx\]

\[\text{ Put  log x }= t\]

\[ \Rightarrow x = e^t \]

\[ \Rightarrow dx = e^t dt\]

\[ \therefore I = \int e^t \left( \frac{1}{t} - \frac{1}{t^2} \right)dt\]

\[\text{ Here}, f(t) = \frac{1}{t}\]

\[ \Rightarrow f'(t) = \frac{- 1}{t^2}\]

\[\text{ let e} ^t \times \frac{1}{t} = p\]

\[\text{ Diff  both  sides  w . r . t  t}\]

\[\left( e^t \times \frac{1}{t} + e^t \times \frac{- 1}{t^2} \right)dt = dp\]

\[ \therefore I = \int dp\]

\[ = p + C\]

\[ = \frac{e^t}{t} + C\]

\[ = \frac{x}{\log x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 20 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×