Advertisements
Advertisements
Question
\[\int \left( \tan x + \cot x \right)^2 dx\]
Sum
Solution
\[\int \left( \tan x + \cot x \right)^2 \]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right)dx\]
\[ = \int\left( \tan^2 x + \cot^2 x + 2 \right)dx\]
\[ = \int\left[ \left( \sec^2 x - 1 \right) + \left( {cosec}^2 x - 1 \right) + 2 \right]dx\]
\[ = \int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ = \tan x - \cot x + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\text{sin mx }\text{cos nx dx m }\neq n\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
` ∫ tan x sec^4 x dx `
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]
\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int x^2 \tan^{- 1} x\ dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]