English

∫ X ( X − 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{x dx}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A \left( x - 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x - 1 \right)^2}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x = A \left( x^2 + 2x - x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = A \left( x^2 + x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = \left( A + C \right) x^2 + \left( A + B - 2C \right) x + \left( - 2A + 2B + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 .................(1)\]

\[A + B - 2C = 1 ..................(2)\]

\[ - 2A + 2B + C = 0 .....................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{2}{9}, B = \frac{1}{3}\text{ and }C = - \frac{2}{9}\]

\[ \therefore \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{2}{9 \left( x - 1 \right)} + \frac{1}{3 \left( x - 1 \right)^2} - \frac{2}{9 \left( x + 2 \right)}\]

\[ \Rightarrow I = \frac{2}{9}\int\frac{dx}{x - 1} + \frac{1}{3}\int\frac{dx}{\left( x - 1 \right)^2} - \frac{2}{9}\int\frac{dx}{x + 2}\]

\[ = \frac{2}{9} \log \left| x - 1 \right| + \frac{1}{3} \times \left( \frac{- 1}{x - 1} \right) - \frac{2}{9} \log \left| x + 2 \right| + C\]

\[ = \frac{2}{9}\log \left| \frac{x - 1}{x + 2} \right| - \frac{1}{3 \left( x - 1 \right)} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 30 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×