English

∫ 1 Sin X ( 2 + 3 Cos X ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]
Sum

Solution

\[\text{  Let  I } = \int\frac{1}{\sin x \left( 2 + 3 \cos x \right)}\text{ dx}\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 2 + 3 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 2 + 3 \cos x \right)} dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 2 + 3 \cos x \right)} dx\]

\[\text{ Putting   cos x = t }\]

\[ \Rightarrow - \text{ sin  x  dx  = dt}\]

\[ \therefore I = \int\frac{- 1}{\left( 1 - t \right) \left( 1 + t \right) \left( 2 + 3t \right)}dt\]

\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}dt\]

\[\text{ Let }\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{3t + 2}\]

\[ \Rightarrow \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)} = \frac{A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)}{\left( t - 1 \right) \left( t + 1 \right) \left( 3t + 2 \right)}\]

\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 3t + 2 \right) + B \left( t - 1 \right) \left( 3t + 2 \right) + C \left( t + 1 \right) \left( t - 1 \right)\]

\[\text{ Putting  t + 1 = 0 or t = - 1}\]

\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( 3 \times - 1 + 2 \right) + C \times 0\]

\[ \therefore B = \frac{1}{2}\]

\[\text{ Now , putting t - 1 = 0 or t = 1 }\]

\[ \Rightarrow 1 = A \left( 1 + 1 \right) \left( 3 + 2 \right) + B \times 0 + C \times 0\]

\[ \therefore A = \frac{1}{10}\]

\[\text{ Now, putting 3t + 2 = 0 or t} = \frac{- 2}{3}\]

\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{2}{3} + 1 \right) \left( - \frac{2}{3} - 1 \right)\]

\[ \Rightarrow 1 = C \left( \frac{1}{3} \right) \left( \frac{- 5}{3} \right)\]

\[ \therefore C = \frac{- 9}{5}\]

\[ \therefore I = \int\frac{1}{10 \left( t - 1 \right)}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{9}{5}\int\frac{1}{3t + 2}dt\]

\[ = \frac{1}{10} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ ln }\left| t + 1 \right| - \frac{9}{5} \text{ ln }\frac{\left| 3t + 2 \right|}{3} + C\]

\[ = \frac{1}{10} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{3}{5} \text{ ln} \left| 3t + 2 \right| + C\]

\[ = \frac{1}{10} + \text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln }\left| \cos x + 1 \right| - \frac{3}{5} \text{ ln } \left| 3 \cos x + 2 \right| + C.......... \left[ \because t = \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 66 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x e^x \text{ dx }\]

\[\int x \cos^2 x\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×