Advertisements
Advertisements
Question
Solution
\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[ = \int \left( 2x - 4 - 1 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{ dx }- \int\sqrt{x^2 - 4x + 3} \text{ dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{ dx }- \int \sqrt{x^2 - 4x + 4 - 4 + 3} \text{ dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{ dx }- \int \sqrt{\left( x - 2 \right)^2 - 1^2} \text{ dx }\]
\[\text{ Let x}^2 - 4x + 3 = t\]
\[ \Rightarrow \left( 2x - 4 \right)dx = dt\]
\[ \therefore I = \int\sqrt{t}\text{ dt }- \int\sqrt{\left( x - 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x - 2}{2} \sqrt{\left( x - 2 \right)^2 - 1^2} - \frac{1^2}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{\left( x - 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 - 4x + 3 \right)^\frac{3}{2} - \left( \frac{x - 2}{2} \right) \sqrt{x^2 - 4x + 3} + \frac{1}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{x^2 - 4x + 3} \right| + C\]
APPEARS IN
RELATED QUESTIONS
`∫ cos ^4 2x dx `
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]