English

∫ ( 2 X − 5 ) √ X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 

Sum

Solution

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int \left( 2x - 4 - 1 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int\sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{x^2 - 4x + 4 - 4 + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{\left( x - 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 - 4x + 3 = t\]
\[ \Rightarrow \left( 2x - 4 \right)dx = dt\]
\[ \therefore I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x - 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x - 2}{2} \sqrt{\left( x - 2 \right)^2 - 1^2} - \frac{1^2}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{\left( x - 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 - 4x + 3 \right)^\frac{3}{2} - \left( \frac{x - 2}{2} \right) \sqrt{x^2 - 4x + 3} + \frac{1}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{x^2 - 4x + 3} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.29 [Page 159]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.29 | Q 9 | Page 159

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \log_{10} x\ dx\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×