English

∫ 1 √ 1 − X 2 ( 2 + 3 Sin − 1 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]
Sum

Solution

\[\text{Let I} = \int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)}dx\]
\[\text{Putting}\ \sin^{- 1} x = t\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sqrt{1 - x^2}}dx = dt\]
\[ \therefore I = \int\frac{1}{2 + 3t}dt\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3t \right| + C\]
\[ = \frac{1}{3} \text{ln }\left| 2 + 3 \sin^{- 1} x \right| + C \left[ \because t = \sin^{- 1} x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.08 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.08 | Q 40 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×