Advertisements
Advertisements
Question
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
Sum
Solution
` Note: "Here, we are considering " log x as log_e x `
\[\text{Let I} = \int\frac{x + 1}{x\left( x + \ logx \right)}dx\]
\[\text{Putting}\ x + \log x = t\]
\[ \Rightarrow 1 + \frac{1}{x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{x + 1}{x}dx = dt\]
\[ \therefore I = \int\frac{1}{t}dt\]
\[ = \text{log }\left| t \right| + C\]
\[ = \text{log }\left| x + \log x \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int \sin^2\text{ b x dx}\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{e^x}{1 + e^{2x}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int \log_{10} x\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int \sin^5 x\ dx\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]